Departamento de Física - Ce.R.P. del Norte

Comunidad educativa del Centro Regional de Profesores del Norte, Rivera, Uruguay.

100 años de la Relatividad General

6:10 washington meneses 0 Comments

El 25 de noviembre de 2015 se conmemoró el centenario de la genial idea de Albert Einstein: la gravitación equivale a la deformación local del espacio-tiempo.








Compartimos aquí un recorte del artículo publicado en CROMO.

¿Qué conmemoramos exactamente este 25 de noviembre de 2015?

Se cumplen justo 100 años del día en que Albert Einstein explicó en una conferencia ante la Academia Prusiana de Ciencias, en Berlín, las ecuaciones definitivas de su teoría general de la relatividad. Tras casi una década de tortuosos intentos de compatibilizar la fuerza gravitatoria con su teoría especial de la relatividad (1905), y con el matemático David Hilbert pisándole los talones, por fin dio forma precisa y definitiva a la que se considera una de las cimas intelectuales de la humanidad. Su presentación se publicó aquel mismo día, 25 de noviembre de 1915, en las actas (Proceedings o Sitzungsberichte) de la academia.

¿Einstein presentó ese mismo día la ecuación que hoy se conoce?

En realidad es un sistema de diez ecuaciones, pero se pueden escribir de manera unificada, utilizando una sola vez el signo "=", y resumirlas en una sola: Rμν -1/2 gμν R = 8πG Tμν. En la forma original en la que la escribió Einstein en su artículo, la notación (por ejemplo usaba índices latinos en lugar de griegos) y la distribución de los términos era ligeramente distinta, pero aún así, es totalmente equivalente a esta.

¿Y qué significa Rμν -1/2 gμν R = 8πG Tμν en un lenguaje que todos podamos comprender?

En lenguaje común, la nueva ecuación de Einstein relaciona dos aspectos: curvatura del espacio-tiempo ↔ Masa (energía). Por ponerlo en contexto, anteriormente la teoría de la gravedad de Newton, el mayor éxito de la revolución científica del siglo XVII, aportaba dos leyes que podemos visualizar así:
Masa → Gravedad; y
Fuerza de gravedad → Movimiento de cuerpos masivos,
donde "→" podemos leerlo como "crea".
Es decir, una masa –por ejemplo, la Tierra– crea un campo gravitatorio, que a su vez ejerce una fuerza que controla el movimiento de otras masas, como una manzana o la Luna. Con la aportación de Einstein, la teoría de Newton se veía ahora desbancada por otra que la incluía como una aproximación solo válida para masas y velocidades relativamente pequeñas. Pero la teoría de Einstein era mucho más que un refinamiento de la de Newton: cambiaba completamente el concepto de qué es y cómo actúa la gravedad.

¿Qué diferencias hay entre la visión clásica del mundo de Newton y la relativista de Einstein?

Hay dos esenciales. Por una parte, en la formulación de Einstein desaparece la noción de gravedad, que ha sido sustituida por algo más misterioso y sugerente: la curvatura del espacio-tiempo. Y, por otra, unifica en una sola ecuación las dos leyes básicas de la teoría newtoniana. Es decir, ambas "→" quedan aunadas en una sola "↔". Sin duda alguna, la eliminación de la gravedad como una fuerza 'real' y su interpretación como un 'efecto aparente' de la curvatura del espacio-tiempo es el elemento más revolucionario de la teoría. De esta manera, Einstein explicaba con una simplicidad pasmosa la observación de Galileo de que, en ausencia de fricción, todos los cuerpos caen al mismo ritmo: los objetos se mueven en un mismo espacio-tiempo que, al estar curvado, produce la impresión de movimiento bajo una fuerza que actúe sobre ellos.

0 comentarios: